Формула виета для многочленов произвольной степени. Франсуа виет. Формулы виета для квадратных уравнений и уравнений высших степеней. Теорема Виета для кубического уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

Одним из методов решений квадратного уравнения является применение формулы ВИЕТА , которую назвали в честь ФРАНСУА ВИЕТА.

Он был известным юристом, и служил в 16 веке у французского короля. В свободное время занимался астрономией и математикой. Он установил связь между корнями и коэффициентами квадратного уравнения.

Достоинства формулы:

1 . Применив формулу, можно быстро найти решение. Потому что не нужно вводить в квадрат второй коэффициент, затем из него вычитать 4ас, находить дискриминант, подставлять его значение в формулу для нахождения корней.

2 . Без решения можно определить знаки корней, подобрать значения корней.

3 . Решив систему из двух записей, несложно найти сами корни. В приведенном квадратном уравнении сумма корней равна значению второго коэффициента со знаком минус. Произведение корней в приведенном квадратном уравнении равно значению третьего коэффициента.

4 . По данным корням записать квадратное уравнение, то есть решить обратную задачу. Например, этот способ применяют при решении задач в теоретической механике.

5 . Удобно применять формулу, когда старший коэффициент равен единице.

Недостатки:

1 . Формула не универсальна.

Теорема Виета 8 класс

Формула
Если x 1 и x 2 - корни приведенного квадратного уравнения x 2 + px + q = 0 , то:

Примеры
x 1 = -1; x 2 = 3 - корни уравнения x 2 - 2x - 3 = 0.

P = -2, q = -3.

X 1 + x 2 = -1 + 3 = 2 = -p,

X 1 x 2 = -1 3 = -3 = q.

Обратная теорема

Формула
Если числа x 1 , x 2 , p, q связаны условиями:

То x 1 и x 2 - корни уравнения x 2 + px + q = 0 .

Пример
Составим квадратное уравнение по его корням:

X 1 = 2 - ? 3 и x 2 = 2 + ? 3 .

P = x 1 + x 2 = 4; p = -4; q = x 1 x 2 = (2 - ? 3 )(2 + ? 3 ) = 4 - 3 = 1.

Искомое уравнение имеет вид: x 2 - 4x + 1 = 0.


Между корнями и коэффициентами квадратного уравнения , помимо формул корней, существуют другие полезные соотношения, которые задаются теоремой Виета . В этой статье мы дадим формулировку и доказательство теоремы Виета для квадратного уравнения. Дальше рассмотрим теорему, обратную теореме Виета. После этого разберем решения наиболее характерных примеров. Наконец, запишем формулы Виета, задающие связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Навигация по странице.

Теорема Виета, формулировка, доказательство

Из формул корней квадратного уравнения a·x 2 +b·x+c=0 вида , где D=b 2 −4·a·c , вытекают соотношения x 1 +x 2 =−b/a , x 1 ·x 2 =c/a . Эти результаты утверждаются теоремой Виета :

Теорема.

Если x 1 и x 2 – корни квадратного уравнения a·x 2 +b·x+c=0 , то сумма корней равна отношению коэффициентов b и a , взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a , то есть, .

Доказательство.

Доказательство теоремы Виета проведем по следующей схеме: составим сумму и произведение корней квадратного уравнения, используя известные формулы корней, после этого преобразуем полученные выражения, и убедимся, что они равны −b/a и c/a соответственно.

Начнем с суммы корней, составляем ее . Теперь приводим дроби к общему знаменателю, имеем . В числителе полученной дроби , после чего : . Наконец, после на 2 , получаем . Этим доказано первое соотношение теоремы Виета для суммы корней квадратного уравнения. Переходим ко второму.

Составляем произведение корней квадратного уравнения: . Согласно правилу умножения дробей, последнее произведение можно записать как . Теперь выполняем умножение скобки на скобку в числителе, но быстрее свернуть это произведение по формуле разности квадратов , так . Дальше, вспомнив , выполняем следующий переход . А так как дискриминанту квадратного уравнения отвечает формула D=b 2 −4·a·c , то в последнюю дробь вместо D можно подставить b 2 −4·a·c , получаем . После раскрытия скобок и приведения подобных слагаемых приходим к дроби , а ее сокращение на 4·a дает . Этим доказано второе соотношение теоремы Виета для произведения корней.

Если опустить пояснения, то доказательство теоремы Виета примет лаконичный вид:
,
.

Остается лишь заметить, что при равном нулю дискриминанте квадратное уравнение имеет один корень. Однако, если считать, что уравнение в этом случае имеет два одинаковых корня, то равенства из теоремы Виета также имеют место. Действительно, при D=0 корень квадратного уравнения равен , тогда и , а так как D=0 , то есть, b 2 −4·a·c=0 , откуда b 2 =4·a·c , то .

На практике наиболее часто теорема Виета используется применительно к приведенному квадратному уравнению (со старшим коэффициентом a , равным 1 ) вида x 2 +p·x+q=0 . Иногда ее и формулируют для квадратных уравнений именно такого вида, что не ограничивает общности, так как любое квадратное уравнение можно заменить равносильным уравнением , выполнив деление его обеих частей на отличное от нуля число a . Приведем соответствующую формулировку теоремы Виета:

Теорема.

Сумма корней приведенного квадратного уравнения x 2 +p·x+q=0 равна коэффициенту при x , взятому с противоположным знаком, а произведение корней – свободному члену, то есть, x 1 +x 2 =−p , x 1 ·x 2 =q .

Теорема, обратная теореме Виета

Вторая формулировка теоремы Виета, приведенная в предыдущем пункте, указывает, что если x 1 и x 2 корни приведенного квадратного уравнения x 2 +p·x+q=0 , то справедливы соотношения x 1 +x 2 =−p , x 1 ·x 2 =q . С другой стороны, из записанных соотношений x 1 +x 2 =−p , x 1 ·x 2 =q следует, что x 1 и x 2 являются корнями квадратного уравнения x 2 +p·x+q=0 . Иными словами, справедливо утверждение, обратное теореме Виета. Сформулируем его в виде теоремы, и докажем ее.

Теорема.

Если числа x 1 и x 2 таковы, что x 1 +x 2 =−p и x 1 ·x 2 =q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 +p·x+q=0 .

Доказательство.

После замены в уравнении x 2 +p·x+q=0 коэффициентов p и q их выражения через x 1 и x 2 , оно преобразуется в равносильное уравнение .

Подставим в полученное уравнение вместо x число x 1 , имеем равенство x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 =0 , которое при любых x 1 и x 2 представляет собой верное числовое равенство 0=0 , так как x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 = x 1 2 −x 1 2 −x 2 ·x 1 +x 1 ·x 2 =0 . Следовательно, x 1 – корень уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, x 1 – корень и равносильного ему уравнения x 2 +p·x+q=0 .

Если же в уравнение x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 подставить вместо x число x 2 , то получим равенство x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 =0 . Это верное равенство, так как x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 = x 2 2 −x 1 ·x 2 −x 2 2 +x 1 ·x 2 =0 . Следовательно, x 2 тоже является корнем уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, и уравнения x 2 +p·x+q=0 .

На этом завершено доказательство теоремы, обратной теореме Виета.

Примеры использования теоремы Виета

Пришло время поговорить о практическом применении теоремы Виета и обратной ей теоремы. В этом пункте мы разберем решения нескольких наиболее характерных примеров.

Начнем с применения теоремы, обратной теореме Виета. Ее удобно применять для проверки, являются ли данные два числа корнями заданного квадратного уравнения. При этом вычисляется их сумма и разность, после чего проверяется справедливость соотношений . Если выполняются оба этих соотношения, то в силу теоремы, обратной теореме Виета, делается вывод, что данные числа являются корнями уравнения. Если же хотя бы одно из соотношений не выполняется, то данные числа не являются корнями квадратного уравнения. Такой подход можно использовать при решении квадратных уравнений для проверки найденных корней.

Пример.

Какая из пар чисел 1) x 1 =−5 , x 2 =3 , или 2) , или 3) является парой корней квадратного уравнения 4·x 2 −16·x+9=0 ?

Решение.

Коэффициентами заданного квадратного уравнения 4·x 2 −16·x+9=0 являются a=4 , b=−16 , c=9 . Согласно теореме Виета сумма корней квадратного уравнения должна быть равна −b/a , то есть, 16/4=4 , а произведение корней должно быть равно c/a , то есть, 9/4 .

Теперь вычислим сумму и произведение чисел в каждой из трех заданных пар, и сравним их с только что полученными значениями.

В первом случае имеем x 1 +x 2 =−5+3=−2 . Полученное значение отлично от 4 , поэтому дальнейшую проверку можно не осуществлять, а по теореме, обратной теореме Виета, сразу сделать вывод, что первая пара чисел не является парой корней заданного квадратного уравнения.

Переходим ко второму случаю. Здесь , то есть, первое условие выполнено. Проверяем второе условие: , полученное значение отлично от 9/4 . Следовательно, и вторая пара чисел не является парой корней квадратного уравнения.

Остался последний случай. Здесь и . Оба условия выполнены, поэтому эти числа x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ:

Теорему, обратную теореме Виета, на практике можно использовать для подбора корней квадратного уравнения. Обычно подбирают целые корни приведенных квадратных уравнений с целыми коэффициентами, так как в других случаях это сделать достаточно сложно. При этом пользуются тем фактом, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения. Разберемся с этим на примере.

Возьмем квадратное уравнение x 2 −5·x+6=0 . Чтобы числа x 1 и x 2 были корнями этого уравнения, должны выполняться два равенства x 1 +x 2 =5 и x 1 ·x 2 =6 . Остается подобрать такие числа. В данном случае это сделать достаточно просто: такими числами являются 2 и 3 , так как 2+3=5 и 2·3=6 . Таким образом, 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, особенно удобно применять для нахождения второго корня приведенного квадратного уравнения, когда уже известен или очевиден один из корней. В этом случае второй корень находится из любого из соотношений .

Для примера возьмем квадратное уравнение 512·x 2 −509·x−3=0 . Здесь легко заметить, что единица является корнем уравнения, так как сумма коэффициентов этого квадратного уравнения равна нулю. Итак, x 1 =1 . Второй корень x 2 можно найти, например, из соотношения x 1 ·x 2 =c/a . Имеем 1·x 2 =−3/512 , откуда x 2 =−3/512 . Так мы определили оба корня квадратного уравнения: 1 и −3/512 .

Понятно, что подбор корней целесообразен лишь в самых простых случаях. В остальных случаях для поиска корней можно применить формулы корней квадратного уравнения через дискриминант.

Еще одно практическое применение теоремы, обратной теореме Виета, состоит в составлении квадратных уравнений по заданным корням x 1 и x 2 . Для этого достаточно вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример.

Напишите квадратное уравнение, корнями которого являются числа −11 и 23 .

Решение.

Обозначим x 1 =−11 и x 2 =23 . Вычисляем сумму и произведение данных чисел: x 1 +x 2 =12 и x 1 ·x 2 =−253 . Следовательно, указанные числа являются корнями приведенного квадратного уравнения со вторым коэффициентом −12 и свободным членом −253 . То есть, x 2 −12·x−253=0 – искомое уравнение.

Ответ:

x 2 −12·x−253=0 .

Теорема Виета очень часто используется при решении заданий, связанных со знаками корней квадратных уравнений. Как же связана теорема Виета со знаками корней приведенного квадратного уравнения x 2 +p·x+q=0 ? Приведем два соответствующих утверждения:

  • Если свободный член q – положительное число и если квадратное уравнение имеет действительные корни, то либо они оба положительные, либо оба отрицательные.
  • Если же свободный член q – отрицательное число и если квадратное уравнение имеет действительные корни, то их знаки различны, другими словами, один корень положительный, а другой - отрицательный.

Эти утверждения вытекают из формулы x 1 ·x 2 =q , а также правил умножения положительных, отрицательных чисел и чисел с разными знаками. Рассмотрим примеры их применения.

Пример.

R он положителен. По формуле дискриминанта находим D=(r+2) 2 −4·1·(r−1)= r 2 +4·r+4−4·r+4=r 2 +8 , значение выражения r 2 +8 положительно при любых действительных r , таким образом, D>0 при любых действительных r . Следовательно, исходное квадратное уравнение имеет два корня при любых действительных значениях параметра r .

Теперь выясним, когда корни имеют разные знаки. Если знаки корней различны, то их произведение отрицательно, а по теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Следовательно, нас интересуют те значения r , при которых свободный член r−1 отрицателен. Таким образом, чтобы найти интересующие нас значения r , надо решить линейное неравенство r−1<0 , откуда находим r<1 .

Ответ:

при r<1 .

Формулы Виета

Выше мы говорили о теореме Виета для квадратного уравнения и разбирали утверждаемые ей соотношения. Но существуют формулы, связывающие действительные корни и коэффициенты не только квадратных уравнений, но и кубических уравнений, уравнений четверной степени, и вообще, алгебраических уравнений степени n . Их называют формулами Виета .

Запишем формулы Виета для алгебраического уравнения степени n вида , при этом будем считать, что оно имеет n действительных корней x 1 , x 2 , …, x n (среди них могут быть совпадающие):

Получить формулы Виета позволяет теорема о разложении многочлена на линейные множители , а также определение равных многочленов через равенство всех их соответствующих коэффициентов. Так многочлен и его разложение на линейные множители вида равны. Раскрыв скобки в последнем произведении и приравняв соответствующие коэффициенты, получим формулы Виета.

В частности при n=2 имеем уже знакомые нам формулы Виета для квадратного уравнения .

Для кубического уравнения формулы Виета имеют вид

Остается лишь заметить, что в левой части формул Виета находятся так называемые элементарные симметрические многочлены .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №64» г. Брянска

Городская научно-практическая конференция

«Первые шаги в науку»

Научно-исследовательская работа

«Теорема Виета для уравнений третьей и четвертой степени»

Математика

Выполнил: ученик 11б класса

Шанов Илья Алексеевич

Научный руководитель:

учитель математики,

кандидат физ.-мат. наук

Быков Сергей Валентинович

Брянск 2012

    Введение ………………………………………………………………… 3

    Цели и задачи …………………………………………………………… 4

    Краткая историческая справка ………………………………………… 4

    Квадратное уравнение …………………………………………………. 5

    Кубическое уравнение …………………………………………………. 6

    Уравнение четвертой степени ………………………………………… 7

    Практическая часть ……………………………………………………. 9

    Список литературы …………………………………………………… 12

    Приложение …………………………………………………………… 13

Введение

Основная теорема алгебры утверждает, что поле является алгебраическим замкнутым, другими словами, что уравнения n-ой степени с комплексными коэффициентами (в общем случае) над полем имеет ровно n комплексных корней. Уравнения третьей степени решаются формулой Кордано. Уравнения четвёртой степени методом Феррари. Кроме того, что в теории алгебры доказано, что если - корень уравнения, то так же является корнем этого уравнения. Для кубического уравнения возможны следующие случаи:

    все три корня – действительные;

    два корня комплексных, один действительный.

Отсюда следует, что любое кубическое уравнение имеет хотя бы один действительный корень.

Для уравнения четвертой степени:

    Все четыре корня различные.

    Два корня действительных, два – комплексных.

    Все четыре корня комплексные.

Данная работа посвящена тщательному изучению теоремы Виета: её формулировке, доказательству, а так же решению задач с применением этой теоремы.

Проделанная работа направлена помощь ученика 11-х классов, которым предстоит сдача ЕГЭ, а так же для юных математиков, которым небезразличны более простые и эффективные методы решений в различных областях математики.

В приложении к этой работе предоставляется сборник задач для самостоятельного решения и закрепления нового материала, исследуемого мной.

Этот вопрос нельзя оставлять без внимания, так как он важен для математики как для науки в целом, так и для учащихся и интересующихся решение подобных задач.

Цели и задачи работы :

    Получить аналог теоремы Виета для уравнения третьей степени.

    Доказать аналог теоремы Виета для уравнения третьей степени.

    Получить аналог теоремы Виета для уравнения четвертой степени.

    Доказать аналог теоремы Виета для уравнения четвертой степени.

    Рассмотреть применения данных вопросов к решению практических задач.

    • Убедиться в практичности применения данной теоремы.

    Углубить математические знания в области решения уравнений.

    Развить интерес к математике.

Краткая историческая справка

По праву достойна в стихах быть воспета

О свойствах корней ТЕОРЕМА ВИЕТА...

ФРАНСУА ВИЕТ(1540-1603) - французский математик. По профессии юрист. В 1591 году ввёл буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений; благодаря этому стало впервые возможным выражение свойств уравнений и их корней общими формулами. Ему принадлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-й степеней. Среди открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений. Для приближённого решения уравнений с численными коэффициентами Виет предложил метод, схожий с позднейшим методом Ньютона. В тригонометрии Франсуа Виет дал полное решение задачи об определении всех элементов плоского или сферического треугольника по трём данным, нашёл важные разложения cos и sin по степеням cos х и sin х. Он впервые рассмотрел бесконечные произведения. Сочинения Виета написаны трудным языком и поэтому получили в свое время меньшее распространение, чем заслуживали.

Квадратное уравнение

Для начала вспомним формулы Виета для уравнения второй степени, которые мы узнали в программе школьного курса обучения.

Т
еорема Виета
для квадратного уравнения (8 класс)

Е
сли и – корни квадратного уравнения то

т. е. сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Так же, вспомним теорему, обратную теореме Виета :

Если числа - p и q таковы, что


то и - корни уравнения

Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения.

Теорема Виета позволяет угадывать целые корни квадратного трехчлена.

Кубическое уравнение

Теперь перейдём, непосредственно, к постановке и решению кубического уравнения с помощью теоремы Виета.

Формулировка

К
убическое уравнение - это уравнение третьего порядка, вида

где a ≠ 0 .

Если а = 1 , то уравнение называют приведённым кубическим уравнением:

Итак, нужно доказать, что для уравнения

справедлива следующая теорема:

п
усть корни данного уравнения, тогда

Доказательство

Представим многочлен

выполним преобразования:

Итак, получим, что

Два многочлена равны тогда и только тогда, когда равны их коэффициенты при соответствующих степенях.

Это значит, что

Что и требовалось доказать.

Теперь рассмотрим теорему, обратную теореме Виета для уравнения третьей степени .

Ф
ормулировка

Е
сли числа таковы, что

Уравнение четвертой степени

Теперь перейдём к постановке и решению уравнения четвертой степени с помощью теоремы Виета для уравнения четвертой степени.

Формулировка

У
равнение четвертой степени - уравнение вида

г
де a ≠ 0 .

Е
сли а = 1 , то уравнение называют приведённым

И
так, докажем, что для уравнения

с
праведлива следующая теорема: пусть корни данного уравнения, тогда

Доказательство

Представим многочлен

выполним преобразования:

Итак, получим, что

Мы знаем, что два многочлена равны тогда и только тогда, когда равны их коэффициенты при соответствующих степенях.

Это значит, что

Что и требовалось доказать.

Рассмотрим теорему, обратную теореме Виета для уравнения четвёртой степени .

Формулировка

Если числа таковы, что


то эти числа являются корнями уравнения

Практическая часть

Теперь рассмотрим решения задач, с помощью теорем Виета для уравнений третьей и четвертой степени.

Задача №1


Ответ: 4, -4.

Задача №2


Ответ: 16, 24.

Для решения данных уравнений можно использовать формулы Кардано и метод Феррари соответственно, но, используя теорему Виета, мы заведомо знаем сумму и произведение корней этих уравнений.

Задача №3

    Составить уравнение третьей степени, если известно, что сумма корней равна 6, по парное произведение корней равно 3, а произведение -4.

Составим уравнение, получим

Задача №4

    Составить уравнение третьей степени, если известно, что сумма корней равна 8 , по парное произведение корней равно 4 , утроенные произведение равно 12 , а произведение 20 .

    Решение: пользуясь формулой Виета, получим


Составим уравнение, получим

С помощью теоремы Виета мы легко составили уравнения по их корням. Это самый рациональный способ решения данных задач.

Задача №5


где a, b, c – формулы Герона.

Раскроем скобки и преобразуем выражение, получим

З
аметим, что подкоренное выражение является кубическим выражением . Воспользуемся теоремой Виета для соответствующего ему кубического уравнения, тогда имеем, что

З

ная, что получим:


Из решения этой задачи видно, что теорема Виета применима к задачам из разных областей математики.

Заключение

В данной работе был исследован метод решения уравнения третьей и четвертой степеней с помощью теоремы Виета. Выведенные в работе формулы просты в использовании. В ходе исследования стало очевидно, что в некоторых случаях этот метод эффективен больше, чем формула Кордано и метод Феррари для уравнений третьей и четвёртой степеней соответственно.

Теорема Виета была применена на практике. Был решён ряд задач, которые помогли лучше закрепить новый материал.

Это исследование было для меня очень интересным и познавательным. Углубив свои знания в математике, я открыл много интересного и с удовольствием занимался данным исследованием.

Но мое исследование в области решения уравнений на этом не закончено. В будущем я планирую заняться исследованием решения уравнения n-ой степени с помощью теоремы Виета.

Хочу выразить огромную благодарность своему научному руководителю, кандидату физико-математических наук, а возможность такого необычного исследования и постоянное внимание в работе.

Список литературы

    Виноградов И.М. Математическая энциклопедия. М., 1977.

    В. Б. Лидский, Л. В. Овсянников, А. Н. Тулайков, М. И. Шабунин. Задачи по элементарной математике, Физматлит, 1980.

теорема Понселе для треугольника... г2 - степенью или... дуга третьей луночки меньше... уравнение , дающее четвертую ... математик Ф. Виет математик ...
  • Научно – исследовательская работа по математике

    Исследовательская работа

    ... Научно исследовательская работа по математике Геометрия... теорема Понселе для треугольника... г2 - степенью или... дуга третьей луночки меньше... уравнение , дающее четвертую ... математик Ф. Виет вычислил в 1579 г. я с 9 знаками. Голландский математик ...

  • Книга

    ... для уравнении третьей и четвертой степени математики исследовательской работе . Лучшие ученые Франции...

  • Краткий очерк истории математики 5–е издание исправленное

    Книга

    ... для многих позднейших учебников по алгеоре. В ней изложение доведено до теории уравнении третьей и четвертой степени ... теоретической и прикладной математики . Внимание уделялось как преподаванию, так и исследовательской работе . Лучшие ученые Франции...